TABLE 1.—EQUILIBRIUM CONSTANTS AND ABSORPTION COEFFICIENTS OF CHARGE TRANSFER COMPLEXES

The first line at each temperature gives the value of K in mole fraction units, the second the values of $\varepsilon \times 10^{-3}$ l. mole⁻¹ cm⁻¹.

complex (solvent)	temp.	1 atm	1000	2000	4000	6000	average s.d. %
CA+HMB	30	121	184	262	502		20
(MCH)		2.41	2.72	3.06	3.51		5
	50	52	56	92	143		37
		2.5	3.3	3.2	3.7		11
TNB+HMB	30	85	123	163	223		10
(MCH)		2.17	2.22	2.34	2.80		5
	40	63	84	125	200		7
		2.19	2.21	2.34	2.59		8
TCNE+HMB	30	156	290	368	743	1151	19
(CH_2Cl_2)		5.4	4.9	5.5	5.5	5.2	16
TCNE+BEN	30	3.26	4.04	3.54	5.07	6.5	10
(CH_2Cl_2)		2.00	2.02	2.56	2.44	2.4	9
TCNE+NAP	30(I)	10.2	12.2	15.9	20.6	30.5	8
(CH_2Cl_2)		1.30	1.40	1.35	1.50	1.43	5
	30(II)	11.1	12.7	16.9	19.9	28.5	7
		1.15	1.23	1.13	1.27	1.19	5
TNB+NAP	25	19	13	12	17	22	20
(CH_2Cl_2)		0.9	1.4	1.7	1.7	1.7	12
CA+NAP	25(I)	7	9	11	10	12	18
(CH_2Cl_2)		1.0	1.0	0.8	1.3	1.0	16
	25(II)	10	10	13	10	17	28
		0.7	0.9	0.8	1.4	1.3	21
CA+PYR	30	27	23	28	40	58	14
(CH_2Cl_2)		9.3	13	14	14	15	10
TNB+ANT	30	9	9	20	22		47
(CH_2Cl_2)		3.4	2.2	2.1	2.6		47
TNB+ANT	30	147	249	249	261		25
(MCH)		1.4	1.2	1.5	2.1		25
PIC+ANT	30	20		13	27		30
(CH_2Cl_2)		0.7		1.5	1.0		31
PIC+ANT	30	35	36	131	193		
(MCH)		1.8	2.5	1.0	1.2		

(I) and (II) refer to the lower and higher energy absorption band respectively.

TABLE 2.—Absorption maxima and ΔV of formation of charge transfer complexes

2	-ABSORPTION MA	AXIMA AND	AV OF	FORMAI	ION OF CHA	ARGE IRANSFER	COMPLEX
	complex	temp. °C	λma	ax mµ	$-\Delta V 1$ atm cm ³ mole ⁻¹	$-\Delta V 4000 \text{ atm}$ cm ³ mole ⁻¹	
	CA+HMB	30	5	09	11	8	
		50	5	09	8	6	
	TNB+HMB	30	3	87	10	4	
		40	3	87	10	6	
	TCNE+HMB	30	5	40	12	9	
	TCNE+BEN	30	3	88	3	(a)	
	TCNE+NAP	30	500	-428	4	(a)	
	TNB+NAP	25	3	65	3	(a)	
	CA+NAP	25	480	-397	5	(a)	
	CA+PYR	30	6	09	5	(a)	
	TNB+ANT	(CH_2Cl_2)	4	48	5	<i>(b)</i>	
	TNB+ANT	(MCH)	4	44	5	(b)	
	PIC+ANT	(CH_2Cl_2)	4	31	8	(b)	
	PIC+ANT	(MCH)	4	44	12	(b)	

(a) The volume changes are constant within the experimental accuracy over the whole pressure range.

(b) approximate values.

RESULTS AND DISCUSSION

The equilibrium constants in mole fraction units and absorption coefficients are summarized in table 1 and the volume changes associated with the formation of the CT complexes and the absorption maxima of these are given in table 2. The shifts of absorption maxima observed at various pressures are shown in fig. 3, while the change in oscillator strength is shown in fig. 4.

FIG. 2.—Log (stability constant) as a function of pressure. Methylene chloride solvent except where marked (MCH).

We discuss first the individual systems.

CA+HMB. This system was measured at 30 and 50°C and values of ΔH and ΔS calculated from the equilibrium constants are given in table 3. Although the accuracy of the data is not great they show a definite increase of $-\Delta H$ and $-\Delta S$ with pressure. There is an increase of 45 % in oscillator strength at 4000 atm which is paralleled by the increased in ε_{max} . There is thus no increase in bandwidths.

TABLE 3.—THERMODYNAMIC FUNCTIONS FOR CA+HMB COMPLEXES IN MCH AT 30° C kcal/mole or cal mole⁻¹ deg.⁻¹

	ALGOVA JALAO	to our entrances	01	
P atm	1	1000	2000	4000
ΔG	-2.9	-3.2	-3.4	-3.8
ΔH	-8.2	-9.3	-10.2	-12.3
ΔS	-17	-20	-22	-28

TNB+HMB. There is an overlap between the CT-band and the absorption by TNB and this had to be corrected for in determining the band maximum. The absorption coefficients found at 30 and 40° C are not significantly different and